

GSFC · 2015

An Introduction to Atomic Layer Deposition with Thermal Applications

Dr. Vivek H. Dwivedi NASA GSFC Code 545

What is a Thin Film?

Thin film: thickness typically <1000nm.

Special properties of thin films: different from bulk materials, it may be —

- Not fully dense
- Under stress
- Different defect structures from bulk
- Quasi two dimensional (very thin films)
- Strongly influenced by surface and interface effects

Other Deposition Techniques

Common Denominator

- •Deposition only occurs on substrates that "see" the target.
- •Plasma process can damage the substrate
- Poor thickness control
- Poor Step Control
- •High Pressure High Temperature Environment

Step coverage of metal over non-planar topography.

- (a) Conformal step coverage, with constant thickness on horizontal and vertical surfaces.
- (b) Poor step coverage, here thinner for vertical surfaces.

Introduction

Atomic

Layer

Deposition

A thin film"nanomanufacturing" tool that allows for the conformal coating materials on a myriad of surfaces with precise atomic thickness control.

Based on:

- Paired gas surface reaction chemistries
- Benign non-destructive temperature and pressure environment
 - Room temperature -> 250 °C (even lower around 45 °C)
 - Vacuum

ALD Procedure

- A or B exposure = Half Cycle
- A+B = Full Cycle = 1 Monolayer
- Digital Process: ABABABAB
- Not Line of Sight, EVERYTHING GETS COATED
- Substrate Independent

Periodic Table of ALD Films

H 1			D:Oxide		C:Car												He 2
Li 3	Be 4	M:Metal P:Phosphide/			F:Fluoride D:Dopant 'Asenide elenide/Telluride								C 6	N 7	O 8	F 9	Ne 10
Na 11	Mg 12 F	0	Recipe for this material is available from CNT staff or customer base														Ar 18
K 19	Ca 20 F	Sc 21	Ti 22 S	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni Ni 28	Cu 29 S	Zn 30 F D	Ga P 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38 5	Y 39	Zr 40	N Nb 41	MO 42	Tc 43	0 M Ru 44	Rh 45	Pd 46	Ag 47	Cd s	In P 49 S	Sn 50 5	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba 56	La 57 S	Mf 72 S	Ta 73	W 74	Re 75	Os 76	O M	Pt 78	Au 79	Hg s	TI 81	Pb s	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109									
				Ce 58	o Pr	Nd	Pm	Sm	o Eu	Gd	o Tb	Dy	Ho	Er	o Tm	Yb	Lu
	vloda			Th 90	59 Pa 92	60 U 93	61 Np 94	62 Pu 95	63 D Am 96	64 Cm 97	65 D Bk 98	66 Cf 100	67 Es 101	68 Fm 102	69 Md 104	70 No 4	71 Lr 4

Acknowledgements

- Gordon, Roy (2008). Atomic Layer Deposition (ALD): An Enable for Nanoscience and Nanotechnology. PowerPoint lecture presented at Harvard University, Cambridge, MA.
- Elam, Jeffrey (2007). ALD Thin Film Materials. Argonne National Laboratory

Advantageous Property

Precise Thickness Control

Thickness = \mathcal{F} (# monolayers)

Example:

If 1 monolayer = 1 A

monolayers = 7

Thickness = 7 A

Reproducibility

Advantageous Property

Advantageous Property

Epitaxial Growth

Artificial trench filled with an ALD nanolaminate Image courtesy of Aalto University (FI)

Multilayer consisting of:
Al2O3 - 25 nm
TiN - 20 nm
Al2O3 - 25 nm
Dr. Fred Roozeboom, NXP Semiconductors Research and
Dr. Erwin Kessels, University of Technology, Eindhoventd

Al,O,

Schematic of a 3D battery integrated in a Si- substrate. The cross-section shows the various functional layers in the battery stack as well as the candidate materials. Knoops, H.C.M. et al., ECS Trans., 25 (2009) pp. 333-344

Batch Process

Coating Silver with Aluminum Oxide http://www.glassonweb.com/

Building off a Commercial Reactor

Commercial Options

In-House Experimental ALD System

Thermal Applications and Results

Passive Thermal Films

ZnO

 $E = \frac{hc}{\lambda}$ where:

 $f = frequency in Hertz (Hz = \frac{1}{sec})$

 λ = wavelength in meters (m)

c = the speed of light (299792458 m/s)

E = energy in electron Volts (eV)

h = Plank's constant $(6.626068 \times 10^{-34 \text{ m}^2\text{kg}})_s$

Blacker Than Black Carbon Nanotubes

Fe ALD on Complex Geometries for Carbon Nanotube Growth

Substrate + Catalyst + Gas = CNNT Si,Ti, flat, 3d + Iron + Ethylene

Blacker than NASA Z306 Paint 10X Darker

Atomic Oxygen Protection

100 nm on Kapton 1000 Cycles 155 °C Al₂O₃

GPM Funded an experiment at Glenn to determine AO effects on materials.

99% mass retention after a simulated 5 year flux

Questions?

